Gibbs sampling, conjugate priors and coupling

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gibbs Sampling, Conjugate Priors and Coupling

We give a large family of simple examples where a sharp analysis of the Gibbs sampler can be proved by coupling. These examples involve standard statistical models – exponential families with conjugate priors or location families with natural priors. Many of them seem difficult to succesfully analyze using spectral or Harris recurrence techniques.

متن کامل

Gibbs Sampling Methods for Stick-Breaking Priors

A rich and  exible class of random probability measures, which we call stick-breaking priors, can be constructed using a sequence of independent beta random variables. Examples of random measures that have this characterization include the Dirichlet process, its two-parameter extension, the two-parameter Poisson–Dirichlet process, Ž nite dimensional Dirichlet priors, and beta two-parameter pro...

متن کامل

Gibbs Sampling, Exponential Families and Coupling

We give examples of a quantitative analysis of the bivariate Gibbs sampler using coupling arguments. The examples involve standard statistical models – exponential families with conjugate priors or location families with natural priors. Our main approach uses a single eigenfunction (always explicitly available in the examples in question) and stochastic monotonicity.

متن کامل

Stochastic segmentation using Gibbs priors

In earlier work, a fast stochastic method for reconstructing a certain class of twodimensional binary images from projections using Gibbs priors was presented. In the present study, we introduce a stochastic segmentation of magnetic resonance gray-scale images of trabecular bone using Gibbs priors. We show some results as well as some post-processing that can be used to clean up segmentations o...

متن کامل

Identi ability, Improper Priors and Gibbs Sampling for Generalized Linear Models

Markov chain Monte Carlo algorithms are widely used in the tting of generalized linear models (GLM). Such model tting is somewhat of an art form requiring suitable trickery and tuning to obtain results one can have conndence in. A wide range of practical issues arise. The focus here is on parameter identiiability and posterior propriety. In particular, we clarify that non-identiiability arises ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sankhya A

سال: 2010

ISSN: 0976-836X,0976-8378

DOI: 10.1007/s13171-010-0004-7